The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation.
نویسندگان
چکیده
Nickel is an economically important metal and phytotechnologies are being developed to limit the impact of nickel mining on the environment. More than 300 plant species are known to hyperaccumulate nickel. However, our knowledge of the mechanisms involved in nickel accumulation in plants is very limited because it has not yet been possible to study these hyperaccumulators at the genomic level. Here, we used next-generation sequencing technologies to sequence the transcriptome of the nickel hyperaccumulator Psychotria gabriellae of the Rubiaceae family, and used yeast and Arabidopsis as heterologous systems to study the activity of identified metal transporters. We characterized the activity of three metal transporters from the NRAMP and IREG/FPN families. In particular, we showed that PgIREG1 is able to confer nickel tolerance when expressed in yeast and in transgenic plants, where it localizes in the tonoplast. In addition, PgIREG1 shows higher expression in P. gabriellae than in the related non-accumulator species Psychotria semperflorens. Our results designate PgIREG1 as a candidate gene for nickel tolerance and hyperaccumulation in P. gabriellae. These results also show how next-generation sequencing technologies can be used to access the transcriptome of non-model nickel hyperaccumulators to identify the underlying molecular mechanisms.
منابع مشابه
Heavy metal tolerance and accumulation in Matthiola flavida, a novel Iranian lead hyperaccumulator
1 Heavy metal tolerance and accumulation in Matthiola flavida, a novel Iranian lead hyperaccumulator 2 The candidate was financially supported by a scholarship from the
متن کاملGenome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils.
Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descend...
متن کاملHyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel.
The nickel (Ni) hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni from metal-enriched soils. Here, metal co-tolerance, accumulation and localization were investigated for A. murale exposed to metal co-contaminants. A. murale was irrigated with Ni-enriched nutrient solutions containing basal or elevated concentrations of cobalt (Co) or zi...
متن کاملBioaccumulation of Nickel and Lead by Bermuda Grass (Cynodon dactylon) and Tall Fescue (Festuca arundinacea) from Two Contaminated Soils
Soil and sediments of the estuaries and wetlands in Northwest of Persian Gulf are recently polluted with different heavy metals because of municipal and industrial wastewaters. Therefore an urgent soil cleaning up and remediation program is vital in this region. Consequently, this study was initiated to screen two plant species (Festuca arundinacea and Cynodon dactylon) for hyperaccumulation of...
متن کاملThe molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.
An integrated molecular and physiological investigation of the fundamental mechanisms of heavy metal accumulation was conducted in Thlaspi caerulescens, a Zn/Cd-hyperaccumulating plant species. A heavy metal transporter cDNA, ZNT1, was cloned from T. caerulescens through functional complementation in yeast and was shown to mediate high-affinity Zn(2+) uptake as well as low-affinity Cd(2+) uptak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 65 6 شماره
صفحات -
تاریخ انتشار 2014